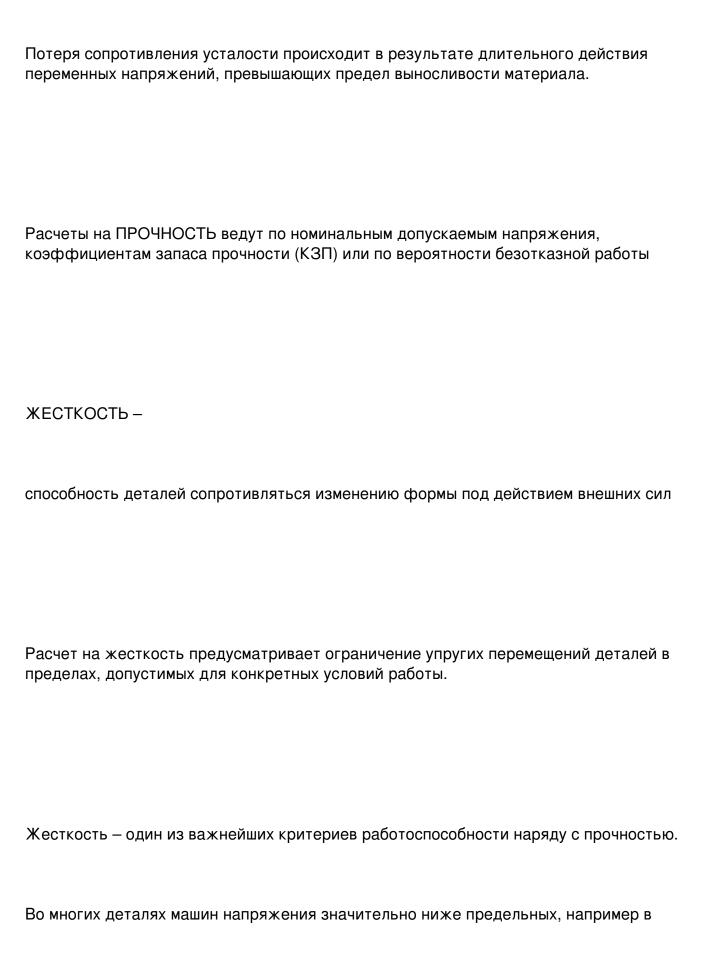
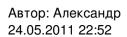
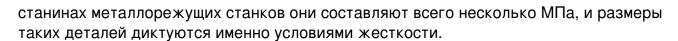
3.
Автор: Александр 24.05.2011 22:52
ПРОЧНОСТЬ—
способность тела сопротивляться разрушению под действиемвнешних нагрузок.
Разрушение деталей происходит вследствие потери

•статической прочности


или


•усталостная прочность (сопротивления усталости).


Усталость – процесс постепенного накопления повреждений материала под действием переменных напряжений, приводящий к изменению свойств, образованию трещин, их развитию и разрушению.

Потеря статической прочности происходит тогда, когда значение максимальных рабочих напряжений превышает предел статической прочности материала (случайные перегрузки, срытые дефекты материала).

Автор: Але	ксандр
24 05 2011	22:52

Нормы жесткости деталей устанавливают на основе практики эксплуатации и расчетов.

Значение критерия жесткости возрастает в связи с тем, что совершенствование материалов происходит главным образом в направлении повышения их прочностных характеристик (ов, о-1),

а модуль упругости Е (характеристика жесткости) изменяется незначительно или остается постоянным.

При этом чаще встречаются случаи, когда размеры детали, полученные из расчета на прочность, оказываются недостаточными по жесткости.

износостойкость

Изнашивание – процесс разрушения и отделения материала с поверхности твердого тела и/или накопление его остаточной деформации при трении.

Автор: А	лександр
24 05 20	11 22:52

Износ проявляется в постепенном изменении размеров детали.

Т.о. ИЗНОСОСТОЙКОСТЬ — способность детали сопротивляться изменению размеров и/или формы под действием сил трения на ее поверхности.
Износ ограничивает работоспособность машин по следующим параметрам:
а) по потере точности – приборы, измерительный инструмент, прецизионные станки;
б) по снижению КПД, увеличению утечек — цилиндр и поршень в двигателях, насосах и т.д.;
в) по снижению прочности вследствие уменьшения сечений, неравномерного износа опор, увеличения динамических нагрузок — зубья зубчатых и червячных колес и т.д.;
г) по возрастанию шума — передачи быстроходных машин (транспортных);
д) по полному истиранию, которое делает деталь непригодной — тормозные колодки, рабочие органы землеройных машин.

Виды изнашивания

- 1.Механическое изнашивание, которое в основном определяется абразивным изнашиванием, т.е. изнашивание посторонними твердыми частицами. Абразивное изнашивание проявляется в виде:
- а) усталостного разрушения при многократном повторном деформировании микровыступов с малой глубиной взаимного внедрения;
- б) малоцикловой усталости при повторном пластическом деформировании микровыступов со средней глубиной внедрения;
- в) микрорезания при глубоком внедрении.
- 2. Молекулярно-механическое изнашивание (изнашивание при схватывании).

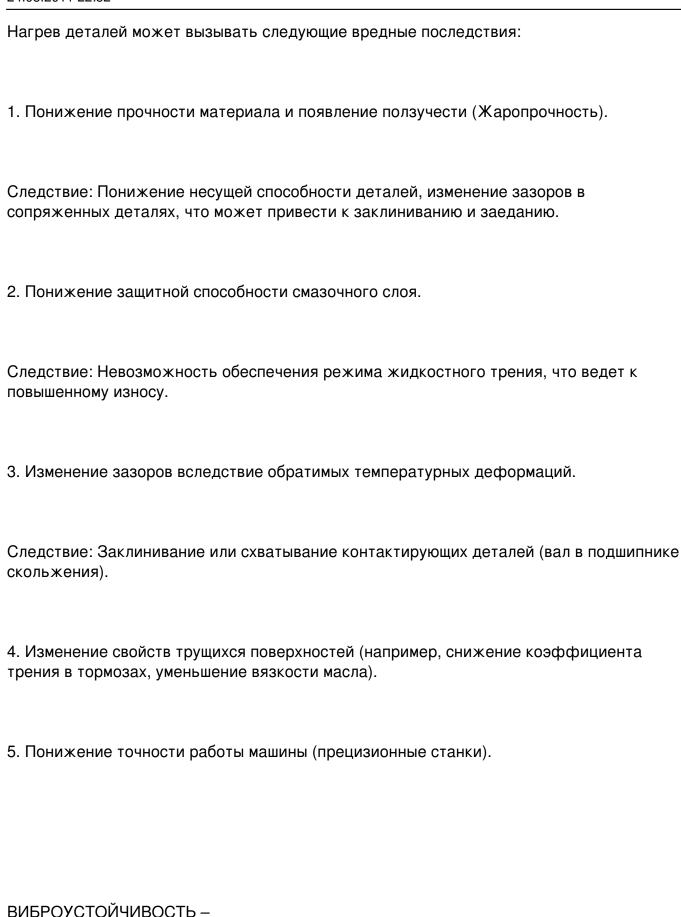
Схватывание происходит вследствие молекулярных сил при трении.

Схватывание в начальной форме проявляется в намазывании материала одной сопряженной детали на другую, а в наиболее опасной форме — в местном сваривании трущихся поверхностей с последующим вырыванием частиц одного тела, приварившихся к другому, при дальнейшем их относительном движении.

3. Коррозионно-механическое изнашивание, при котором механическое изнашивание сопровождается химическим или электрическим взаимодействием материала со средой (продукты коррозии стираются механическим путем).

Коррозия – процесс постоянного разрушения поверхностных слоев металла в результате окисления.

Фреттинг-коррозия (to fret – разъедать) – разрушение постоянно контактирующих поверхностей в условиях тангенциальных микросмещений без удаления продуктов износа (проявляется на посадочных поверхностях колец подшипников качения, зубчатых колес, шлицевых соединений).


Водородный износ, связанный с выделением водорода при разложении воды, нефти и нефтепродуктов, деструкцией пластмасс при трении, применении водородного топлива.

ТЕПЛОСТОЙКОСТЬ

Работа машин сопровождается тепловыделением, вызываемым рабочим процессом машин и трением в их механизмах.

Тепловыделение, связанное с рабочим процессом, особенно интенсивно у тепловых двигателей, электрических машин, литейных и машин для горячей обработки материалов.

Виды тепла: 1) внешняя среда; 2) источники энергии внутри машины; 3) внешнее трение; 4) внутреннее трение в материале (переменные напряжения).

способность конструкций работать в нужном диапазоне режимов
без недопустимых колебаний.
В машинах основное распространение имеют:
1. Вынужденные колебания, вызываемые внешними периодическими силами (неуравновешенность вращающихся деталей, погрешностями изготовления, переменными силами в поршневых машинах и т.д.). 2. Автоколебания или самовозбуждающиеся колебания, т.е. колебания, в которых возмущающие силы вызываются самими колебаниями (фрикционные автоколебания, вызываемые падением силы трения с ростом скорости; гидродинамические автоколебания в подшипнике скольжения, вызываемые неуравновешенной частью реакции смазочного слоя).
Расчет на виброустойчивость проводят из условия несовпадения частоты рабочего режима с критическими частотами.
Критическая частота — частота собственных
колебаний технической системы.
Реальное твердое тело имеет бесконечное
множество критических частот.

Автор: Александр 24.05.2011 22:52 При расчетах техническую систему значительно упрощают и на практике рассматривают обычно первые три критические частоты. НАДЕЖНОСТЬ Надежность (общая) — свойство объекта (изделия) выполнять в течение заданного времени или заданной наработки свои функции, сохраняя в заданных пределах эксплуатационные показатели. Надежность изделий обусловливается их безотказностью, долговечностью, ремонтопригодностью и сохраняемостью. Безотказность — свойство сохранять работоспособное состояние в течение заданной наработки без вынужденных перерывов. Это свойство особенно важно для машин,

отказы которых связаны с опасностью для жизни людей (например, самолеты) или с

Долговечность — свойство изделия сохранять работоспособное состояние

перерывом в работе большого комплекса машин.

до предельного состояния с необходимыми перерывами для технического обслуживания и ремонта.

Ремонтопригодность — приспособленность изделия к предупреждению, обнаружению и устранению отказов и неисправностей путем проведения технического обслуживания и ремонтов.

Сохраняемость — свойство изделия сохранять безотказность, долговечность и ремонтопригодность после и в течение установленного срока хранения и транспортирования.