3. Материальные и идеальные модели.

27.06.2011 00:56 Александр
Печать

3. Материальные и идеальные модели.

КЛАССИФИКАЦИЯ МОДЕЛЕЙ

Каждая модель характеризуется тремя признаками:

1) принадлежностью к определённому классу задач (по классам задач);

2) указанием класса объектов моделирования (по классам объектов);

3) способом реализации (по форме представления и обработки информации).

Рассмотрим более подробно последний вид классификации. По этому признаку модели делятся на материальные и идеальные.

1 Материальные модели:

1.1 геометрически подобные масштабные, воспроизводящие пространственно-геометрические характеристики оригинала безотносительно его субстрату (макеты зданий и сооружений, учебные муляжи и др.);

1.2 основанные на теории подобия, воспроизводящие с масштабированием в пространстве и времени свойства и характеристики оригинала той же природы, что и модель, (гидродинамические модели судов, продувочные модели летательных аппаратов);

1.3 аналоговые приборные, воспроизводящие исследуемые свойства и характеристики объекта оригинала в моделирующем объекте другой природы на основе некоторой системы прямых аналогий (разновидности электронного аналогового моделирования).

Рассмотрим более подробно два последних пункта. Для парохода правильный выбор обводов, подбор гребного винта и согласование с характеристиками винта и корпуса мощности и скорости вращения вала – проблема № 1. По существу речь идет о необходимости оптимизировать взаимодействие системы корпус – винт – двигатель с обтекающей судно жидкой средой по критерию максимального КПД. Решение проблемы опытным путем невозможно по экономическим соображениям, не поддается она и теоретическому решению. Выход был найден на пути синтеза теории масштабного гидродинамического моделирования, т.е. экспериментальное исследование малых геометрически подобных моделей проектируемых судов в специальных бассейнах на основе теории подобия. Теория обеспечивала возможность достоверного переноса данных, полученных на модели, на «натуру», на свойства и характеристики реального, но еще не существующего судна. И сегодня методы масштабного физического моделирования сохраняют свое значение.

Аналоговое моделирование основано на том, что свойства и характеристики некоторого объекта воспроизводятся с помощью модели иной, чем у оригинала физической природы. Целый ряд явлений и процессов существенно различной природы описывается аналогичными по структуре математическими выражениями. Описываемые аналогичными математическими структурами разнородные объекты можно рассматривать как пару моделей, которые с точностью до свойств, учитываемых в математическом описании, взаимно отображают друг друга, причем коэффициенты, связывающие соответственные (сходственные) параметры, являются в этом случае размерными величинами.

2 Идеальные модели

2.1 неформализованные модели, т.е. системы представлений об объекте оригинале, сложившиеся в человеческом мозгу;

2.2 частично формализованные:

2.2.1 вербальные – описание свойств и характеристик оригинала на некотором естественном языке (текстовые материалы проектной документации, словесное описание результатов технического эксперимента);

2.2.2 графические иконические – черты, свойства и характеристики оригинала, реально или хотя бы теоретически доступные непосредственно зрительному восприятию (художественная графика, технологические карты);

2.2.3 графические условные – данные наблюдений и экспериментальных исследований в виде графиков, диаграмм, схем;

2.2.4 вполне формализованные (математические) модели.

Основное отличие этого типа моделей от остальных состоит в вариативности – в кодировании одним знаковым описанием огромного количества конкретных вариантов поведения системы. Tак, линейные дифференциальные уравнения с постоянными коэффициентами описывают и движение массы на пружине, и изменение тока в колебательном контуре, и измерительную схему системы автоматического регулирования, и ряд других процессов. Однако еще более важно то, что в каждом из этих описаний одни и те же уравнения в буквенном (а вообще говоря, и в числовом) виде соответствуют бесконечному числу комбинаций конкретных значений параметров. Скажем, для процесса механических колебаний – это любые значения массы и жесткости пружины.

 

В знаковых моделях возможен дедуктивный вывод свойств, количество следствий в них обычно более значительно, чем в моделях других типов. Они отличаются компактной записью удобством работы, возможностью изучения в форме, абстрагированной от конкретного содержания. Все это позволяет считать знаковые модели наивысшей ступенью и рекомендовать стремиться к такой форме моделирования.

Заметим, что деление моделей на вербальные, натурные и знаковые в определенной степени условно. Так, существуют смешанные типы моделей, скажем, использующие и вербальные, и знаковые построения.

Введем «прагматическое» определение математической модели, удобное для практических приложений. Для этого используем хорошо известное из кибернетики представление объекта в виде «черного ящика».