ЦП Автоматизированные системы управления и промышленная безопасность

БК Автоматизированные системы управления и кибернетика

  • Увеличить размер шрифта
  • Размер шрифта по умолчанию
  • Уменьшить размер шрифта
Программные и аппаратные средства автоматизации.

Знакомимся с LabView

E-mail Печать PDF

Практически у всех разработчиков устройств на микроконтроллерах, будь то любители или профессионалы, рано или поздно возникает необходимость подключить микроконтроллерный девайс к его “старшему брату”, а именно к PC. Вот тогда и встает вопрос, а какой софт использовать для обмена с микроконтроллером, анализировать и обрабатывать полученные от него данные? Часто для обмена МК с компьютером используют интерфейс и протокол RS232 - старый добрый COM порт в той или иной реализации.

На стороне компьютера применяют различные терминальные программы, коих сотни. Но эти программы обеспечивают лишь прием и передачу информации. Как то обрабатывать и визуализировать ее в наглядной форме затруднительно.

Некоторые пишут подобное ПО самостоятельно на каком либо языке программирования (Delphi, C++), наделяя необходимым функционалом. Но эта задача не из легких, нужно знать, помимо самого языка, устройство операционной системы, способы работы с комуникационными портами, множество других технических тонкостей, которые отвлекают от главного — реализации алгоритма программы. В общем, быть попутно еще Windows/Unix программистом.

На фоне этих подходов резко отличается концепция виртуальных приборов (vi). В этой статье пойдет речь о программном продукте LabView фирмы Nationals Instruments. Я только начинаю осваивать этот замечательный продукт, поэтому могу допускать неточности и ошибки. Спецы поправят :-)) Собственно что такое LabView?

LabView - это среда разработки и платформа для выполнения программ, созданных на графическом языке программирования «G» фирмы National Instruments.

Говоря простым языком, LabView - Это среда создания приложений для задач сбора, обработки, визуализации информации от различных приборов, лабораторных установок и т.п. А также для управления технологическими процессами и устройствами. Однако с помощью LabView можно создавать вполне себе обычное прикладное ПО. У меня нет цели подробно описывать этот продукт и работу с ним. По LabView написаны тысячи страниц отличной документации и сотни книг. В интернете полно ресурсов, посвященных LabView, на которых можно получить ответы на все вопросы.

Цель статьи — показать насколько просто и удобно, по сравнению с традиционным программированием, можно создавать приложения для ПК и какую мощь несет в себе LabView. (На самом деле спорно, т.к. в традиционном программировании, на той же Delphi сделать не сложней. И по эффективности вряд ли хуже, если не лучше. Но для этого дельфу надо гораздо дольше изучать. Тут же все быстро и понятно почти сразу. Пару методичек проштудировал и вперед городить циферблаты всякие. Так что для программистов оно как собаке пятая нога, а вот таким далеким от компа товарищам как я — самое то. Я когда то, за полчаса, впервые увидев LabView, по тоненькой методичке сваял зверскую систему управления поливом и отоплением для конопляной теплицы. С ПИД регуляторами всякими. Вывел на потенциометры и датчики лабораторного стенда, что стоял в нашем технаре и запустил этот адский агрегат. Причем все заработало сразу, без отладки. Кстати, на LabView работает вся аппаратура адронного коллайдера, а также очень много научной аппаратуры. прим. DI HALT) Ведь большинству электронщиков чуждо программирование для PC, верно? Вот это мы и попробуем исправить. Дабы не изучать сферических вакуумных коней, поставим для себя и реализуем простенькую задачу. Задача действительно проста, но на основе нее можно понять основные принципы программирования в LabView. Мы будем использовать LabView версии 2010. Для других версий отличия будут минимальны.

Задача
У нас есть плата с микроконтроллером AVR, соединенная с компьютером по RS232. В контроллер залита прошивка, согласно которой контроллер измеряет значение напряжения на одном из входов АЦП, и передает код АЦП (от 0 до 1023) в компьютер по последовательному каналу. Необходимо написать программу для ПК, которая будет принимать поток данных от АЦП, отображать код АЦП, преобразовывать код АЦП в значение напряжения в вольтах, отображать значение напряжения в вольтах, строить график изменения напряжения во времени.

Подробнее...
 

Управление ШД

E-mail Печать PDF

Существует несколько способов управления фазами шагового двигателя.

Первый способ обеспечивается попеременной коммутации фаз, при этом они не перекрываются, в один момент времени включена только одна фаза (рис а). Этот способ называют ”one phase on” full step или wave drive mode. Точки равновесия ротора для каждого шага совпадают с «естественными» точками равновесия ротора у незапитанного двигателя. Недостатком этого способа управления является то, что для биполярного двигателя в один и тот же момент времени иcпользуется 50% обмоток, а для униполярного – только 25%. Это означает, что в таком режиме не может быть получен полный момент.

Различные способы управления фазами шагового двигателя.

Подробнее...
 

Использование ШД

E-mail Печать PDF

В машиностроении наибольшее распространение получили высокомоментные двухфазные гибридные шаговыеэлектродвигатели с угловым перемещением 1,8°/шаг (200 шагов/оборот) или 0,9°/шаг (400 шаг/об). Точность выставления шага определяется качеством механической обработки ротора и статора электродвигателя. Производители современных шаговых электродвигателей гарантируют точность выставления шага без нагрузки до 5 % от величины шага.

Дискретность шага создаёт существенные вибрации, которые в ряде случаев могут приводить к снижению крутящего момента и возбуждению механических резонансов в системе. Уровень вибраций удаётся снижать при использовании режима дробления шага или при увеличении количества фаз.

Режим дробления шага (микрошаг) реализуется при независимом управлении током обмоток шагового электродвигателя. Управляя соотношением токов в обмотках можно зафиксировать ротор в промежуточном положении между шагами. Таким образом можно повысить плавность вращения ротора и добиться высокой точности позиционирования. Качество изготовления современных шаговых двигателей позволяет повысить точность позиционирования в 10-20 раз.

Шаговые двигатели стандартизованы по посадочным размерам и размеру фланца: NEMA 17, NEMA 23, NEMA 34, … — размер фланца 42 мм, 57 мм, 86 мм, 110 мм соответственно. Шаговые электродвигатели NEMA 23 могут создавать крутящий момент до 30 кгс*см, NEMA 34 до 120 кгс*см и до 210кгс*см для двигателей с фланцем 110 мм.

Шаговый электродвигатель с интегрированным контроллером

Шаговые двигатели создают сравнительно высокий момент при низких скоростях вращения. Момент существенно падает при увеличении скорости вращения. Однако, динамические характеристики двигателя могут быть существенно улучшены при использовании драйверов со стабилизацией тока на основе ШИМ.

Шаговые электродвигатели применяются в приводах машин и механизмов, работающих в старт-стопном режиме, или в приводах непрерывного движения, где управляющее воздействие задаётся последовательностью электрических импульсов, например, в станках сЧПУ. В отличие от сервоприводов, шаговые приводы позволяют получать точное позиционирование без использования обратной связи от датчиков вращения.

 

 

 

 

 

Что такое шаговый двигатель?

E-mail Печать PDF

 

Шаговый двигатель – это исполнительный привод многих современных аппаратов: станков, приворов, автоматов. Шаговый двигатель в паре со специальным блоком управления призван преобразовывать входной электрический сигнал в механическое перемещение ротора – определенный угол, назваемый также основным угловым шагом двигателя.

По принципу действия шаговый двигатель относится к двигателям синхронного типа: в нем существует связь между сигналом питания и положением ротора двигателя.

В настоящий момент распространены и повсеместно применяются гибридные шаговые двигатели, которые обладают достоинствами двигателей с постоянными магнитами и синхронных реактивных двигателей с переменным магнитным сопротивлением. Гибридные шаговые двигатели имеют вращающий момент, пропорциональный току, и характеризуются большим  числом шагов на оборот.

 

Шаговый двигатель (ШД) может быть рассмотрен как ДПТ без коллекторного узла. Обмотки ШД являются частью статора. На роторе расположен постоянный магнит или, для случаев с переменным магнитным сопротивлением, зубчатый блок из магнитомягкого материала. Все коммутации производятся внешними схемами. Обычно система мотор — контроллер разрабатывается так, чтобы была возможность вывода ротора в любую, фиксированную позицию, то есть система управляется по положению. Цикличность позиционирования ротора зависит от его геометрии.

Принято различать шаговые двигатели (Autonics, Motionking, Fulling motor) и серводвигатели (Lenze). Принцип их действия во многом похож, и многие контроллеры могут работать с обоими типами. Основное отличие заключается в шаговом (дискретном) режиме работы шагового двигателя (n шагов на один оборот ротора) и плавности вращения синхронного двигателя. Серводвигатели требуют наличия в системе управления датчика обратной связи по скорости и/или положению, в качестве которого обычно используется резольвер или sin/cos энкодер. Шаговые двигатели преимущественно используются в системах без обратных связей, требующих небольших ускорений при движении. В то время как синхронные сервомоторы обычно используются в скоростных высокодинамичных системах.

Шаговые двигатели (ШД) делятся на две разновидности: двигатели с постоянными магнитами и двигатели с переменным магнитным сопротивлением (гибридные двигатели). С точки зрения контроллера отличие между ними отсутствует. Двигатели с постоянными магнитами обычно имеют две независимые обмотки, у которых может присутствовать или отсутствовать срединный отвод (см. рис. 1).

Биполярные шаговые двигатели с постоянными магнитами и гибридные двигатели сконструированы более просто, чем униполярные двигатели, обмотки в них не имеют центрального отвода (см. рис. 2).

Подробнее...
 

изготовление печатных плат

E-mail Печать PDF

Бродил по ютюб и наткнулся на очень хорошее видео:(в подробнее 2 часть)

 

 

Подробнее...
 

Переключение света фар: ближний/ дальний

E-mail Печать PDF

Простое автоматическое устройство, которое включает фары через 10-15 секунд после включения зажигания, и выключает их через 5-10 минут после выключения зажигания. 
Первая малая задержка нужна чтобы не нагружать аккумулятор лишним током при запуске двигателя, накачке бензина в инжектор. 
Вторая большая задержка нужна чтобы фары не выключались при кратковременных остановках, например, на заправку. 
В основе схемы микросхема К561ЛА7 причём вместо нее можно использовать и её аналог К561ЛЕ5. Поскольку все элементы используются только как инверторы никакого значения логика входов не имеет. 
Интервалы времени задаются путём ----разрядки конденсатора С1 Здесь необычно для таких схем применён конденсатор большой ёмкости.Сделано это чтобы можно было использовать в RC-цепи резисторы относительно низкого сопротивления, а сама время-задающая цепь работала на относительно высоких токах. 
Это имеет вжное значение при работе в автомобиле,где как температура, так влажность может меняться в широких пределах. 
Более привычная RC-цепь с мегаомными резисторами может попросту залипнуть из-за того что ток утечки будет больше тока зарядки. В данном случае это вряд ли возможна. 
и так, в исходном состоянии С1 разряжен. 
Напряжение на входах D1.1=лог.0. 
Так же и на выходе D1.4. Транзистор VT1 закрыт, реле К1 выключено. 
Фары не горят.

Подробнее...
 

Создан перспективный материал для термогенератора

E-mail Печать PDF

В качестве материалов для термоэлектрогенераторов (на снимке) учёные предлагали сотни веществ. Нынешний вариант (композит SrTe-PbTe) тоже тестировался ранее. Но для наилучшего результата оказалось важным подобрать удачные пропорции «микстуры» (фото с сайта northwestern.edu).

До 14% бросового тепла от различных машин смогут превращать в ток устройства на основе нового материала, разработанного в США. Авторы эксперимента уверяют, что такие приборы будут не слишком дорогими, и это делает реальным практическое применение новации.

Химики и физики из пары университетов — Северо-Западного и Мичигана — придумали, как равномерно распределить нанокристаллы теллурида стронция (SrTe) в толще теллурида свинца (PbTe), чтобы те одновременно повышали эффективность полупроводникового преобразователя, но не мешали бегу электронов внутри него.

Подробнее...
 

IBM раскрыла физику сверхъёмкой компьютерной памяти

E-mail Печать PDF

Пока устройство нельзя назвать полноценной памятью: перед нами единичный железно-никелевый нанопровод (тёмно-коричневый на снимке), служащий для проверки основных принципов (фото IBM).

Экзотическая технология от IBM может обеспечить в сто раз большую плотность упаковки информации, чем в сегодняшних флешках и жёстких дисках. В конце минувшего года экспериментаторы сделали важный шаг на пути к перемещению новации в практическую плоскость.

Исследователь Стюарт Паркин (Stuart Parkin) и его группа изучили важнейший аспект работы прибора под названием Racetrack memory. Стюарт придумал его семь лет назад (о принципе «беговой дорожки», или «трека», вы можете прочитать здесь). Удивительно, но до сих пор, несмотря на ряд опытов, физика Racetrack memory не была ясна в полной мере. Это тормозило продвижение проекта.

Подробнее...
 


Страница 25 из 52

Поиск по сайту

Голосование

Какую среду программирования вы используете чаще всего?
 

Посетители